FEATURES:

- $8 \mathrm{~K} \times 8 \mathrm{~K}$ non-blocking switching at $32.768 \mathrm{Mb} / \mathrm{s}$
- 16 serial input and output streams
- Accepts single-bit single-data streams at $32.768 \mathrm{Mb} / \mathrm{s}$
- Per-channel Variable Delay Mode for low-latency applications
- Per-channel Constant Delay Mode for frame integrity applications
- Automatic identification of ST-BUS ${ }^{\circledR}$ and GCl bus interfaces
- Automatic frame offset delay measurement
- Per-stream single data frame delay offset programming
- Per-channel high-impedance output control
- Direct microprocessor access to all internal memories
- Memory block programming for quick setup
- IEEE-1149.1 (JTAG) Test Port
- 3.3V Power Supply
- Available in 144-pin ($20 \mathrm{~mm} \times 20 \mathrm{~mm}$) Thin Quad Flatpack (TQFP) and 144-pin (13mm x 13mm) Plastic Ball Grid Array (PBGA)
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

DESCRIPTION:

The IDT72V73250 has a non-blocking switch capacity of $8,192 \times 8,192$ channels at $32.768 \mathrm{Mb} / \mathrm{s}$. With 16 inputs and 16 outputs, programmable per stream control, and a variety of operating modes the IDT72V73250 is designed for the TDM time slot interchange function in either voice or data applications.
Some of the main features of the IDT72V73250 are LOW power 3.3 Volt operation, automatic ST-BUS ${ }^{\circledR} / \mathrm{GCl}$ sensing, memory block programming, simple microprocessorinterface, JTAG TestAccessPort(TAP) and perstream programmable inputoffset delay, variable orconstantthroughputmodes, output enable and processor mode.
The IDT72V73250 is capable of switching up to $8,192 \times 8,192$ channels withoutblocking. Designed to switch 64 Kbit/s PCM or N x $64 \mathrm{Kbit} / \mathrm{s}$ data, the device maintains frame integrity in data applications and minimizes throughput delay for voice applications on a per-channel basis.
The 16 serial input streams (RX) of the IDT72V73250 are run at $32.768 \mathrm{Mb} / \mathrm{s}$ allowing 512 channels per 125μ sframe. The data rates on the output streams (TX) are identical to those on the input streams (RX).

FUNCTIONAL BLOCK DIAGRAM

5933 drw01

PIN CONFIGURATIONS

NOTE:

1. NC = No Connect.

PBGA: 1 mm pitch, $13 \mathrm{~mm} \times 13 \mathrm{~mm}$ (BB144-1, order code: BB) TOP VIEW

PIN CONFIGURATIONS (CONTINUED)

NOTE:

1. $\mathrm{NC}=$ No Connect.

PIN DESCRIPTION

SYMBOL	NAME	1/0	DESCRIPTION
A0-14	Address 0 to 14	1	These address lines access all internal memories.
C32i	Clock	1	Serial clock for shifting datain/out on the serial data stream. This input accepts a 32.768 MHz clock.
$\overline{\text { CS }}$	Chip Select	1	This active LOW input is used by a microprocessor to activate the microprocessor port of IDT72V73250.
D0-15	Data Bus 0-15	$1 / 0$	These pins are the data bits of the microprocessor port.
$\overline{\text { DS }}$	DataStrobe	1	This active LOW input works in conjunction with $\overline{\mathrm{CS}}$ to enable the read and write operations and sets the data bus lines (D0-D15).
$\overline{\text { DTA }}$	Data Transfer Acknowledgment	0	Indicates that a data bus transfer is complete. When the bus cycle ends, this pin drives HIGH and then goes high-impedance, allowing for faster bus cycles with a weaker pull-up resistor. A pull-up resistor is required to hold a HIGH level when the pin is in high-impedance.
FE	Frame Evaluation	1	This input can be used to measure delay in the data path by comparing the frame pulse, F32i, with this input.
F32i	Frame Pulse	1	This inputaccepts and automaticallyidentifies frame synchronization signals formatted accordingto ST-BUS ${ }^{\circledR}$ and $G C$ I speciifications.
GND	Ground		Ground Rail
ODE	OutputDrive Enable	I	This is the output enable control for the TX serial outputs. When the ODE input is LOW and the Output Stand Bybitof the Control Registeris LOW, all TX outputs are in a high-impedance state. If this inputis HIGH, the TX outputdrivers are enabled. However, each channel may still be put into a high-impedance state by using the per-channel control bits in the Connection Memory.
RESET	Device Reset	I	This inputputs the IDT72V73250 into a reset state that clears the device internal counters, registers and brings TX0-15 and D0-D15 into a high-impedance state. The RESET pin must be held LOW for a minimum of 20 ns to properly reset the device.
R \bar{W}	Read/Write	1	This input controls the direction of the data bus lines (D0-D15) during a microprocessor access.
RX0-15	DataStream Input 0 to 15	1	Serial data input stream. These streams have a data rate of $32.768 \mathrm{Mb} / \mathrm{s}$.
TCK	TestClock	1	Provides the clocktothe JTAG testlogic.
TDI	Test Serial Data In	1	JTAG serial test instructions and data are shifted in on this pin. This pin is pulled HIGH by an internal pull-up when not driven.
TDO	TestSerial Data Out	0	JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high-impedance state when JTAG scan is not enabled.
TMS	TestModeSelect	1	JTAG signal that controls the state transitions of the TAP controller. This pin is pulled HIGH by an internal pull-up when not driven.
$\overline{\text { TRST }}$	Test Reset	I	Asynchronously initializes the JTAG TAP controller by putting itinthe Test-Logic-Resetstate. This pin is pulled by an internal pull-up when not driven. This pin should be pulsed LOW on power-up, or held LOW, to ensure that the IDT72V73250 is in the normal functional mode.
TX0-7	TX Output 0 to 7 (Three-State Outputs)	0	Serial data output stream. These streams have a data rate of $32.768 \mathrm{Mb} / \mathrm{s}$.
$\begin{aligned} & \hline \text { TX8-15/ } \\ & \text { OEIO-7 } \end{aligned}$	TX Output 8to 15/ OutputEnable Indication0-7 (Three-State Outputs)	0	When all 16 output streams are selected via Control Register, these pins are the output streams TX8 to TX15 and operate at $32.768 \mathrm{Mb} / \mathrm{s}$. When output enable function is selected, these pins reflect the active or highimpedance status forthe corresponding outputstream Output Enable Indication 0-7.
Vcc	Vcc		+3.3 Volt Power Supply.

DESCRIPTION (CONTINUED)

With two main operating modes, ProcessorMode and ConnectionMode, the IDT72V73250 can easily switch data from incoming serial streams (Data Memory) or from the controlling microprocessorvia Connection Memory. As control and status information is critical indatatransmission, the ProcessorMode is especially useful whenthere are multiple devices sharingthe input and output streams.

With data coming from multiple sources and through different paths, data entering the device is often delayed. To handlethis problem, the IDT72V73250 has a Frame Evaluationfeature to allow individual streams to be offsetfromthe frame pulse in half clock-cycle intervals up to +7.5 clock cycles.

The IDT72V73250 also provides a JTAG test access port, memory block programming, a simplemicroprocessorinterfaceandautomaticST-BUS ${ }^{\circledR} / \mathrm{GCl}$ sensing to shorten setup time, aid in debugging and ease use of the device withoutsacrificing capabilities.

FUNCTIONAL DESCRIPTION

DATA ANDCONNECTION MEMORY

All data that comes inthrough the RX inputs go through a serial-to-parallel conversion before being stored into internal Data Memory. The 8 KHz frame pulse (F32i) is used to mark the 125μ sframe boundaries and to sequentially address the input channels in Data Memory.

Dataoutputonthe TX streams may come from either the serial inputstreams (DataMemory) orfrom the microprocessor (ConnectionMemory). Inthe case that RX inputdataistobeoutput, the addresses inConnectionMemory areused to specify a stream and channel of the input. TheConnectionMemory is setup in such a way that each location corresponds to an output channel for each particularstream. Inthat way, more than one channel can outputthe same data. InProcessorMode, the microprocessorwrites datato theConnection Memory locations correspondingtothe stream and channel thatis to be output. The lower half (8leastsignificantbits) oftheConnectionMemory is outputeveryframeuntil the microprocessor changes the data or mode of the channel. By using this Processor Mode capability, the microprocessor can access input and output time-slots on a per-channel basis.

The two mostsignificantbits of the Connection Memory are used to control per-channelmode of the outputstreams. Specifically, theMOD1-0bits are used to select Processor Mode, Constant or Variable delay Mode, and the highimpedance state of outputdrivers. IftheMOD1-0 bits are setto 1-1 accordingly, only that particular output channel (8 bits) will be in the high-impedance state. If however, the ODE inputpinis LOW and the Output Standby Bitinthe Control Register is LOW, all of the outputs will be in a high-impedance state even if a particular channel in Connection Memory has enabled the output for that channel. In otherwords, the ODEpin and OutputStand By control bitare master output enables for the device (See Table 3).

SERIAL DATA INTERFACE TIMING

Fora32.768Mb/sserial data rate, the masterclock frequency will be running at 32.768 MHz resulting in a single-bit perclock. The IDT72V73250 provides two different interface timing modes, ST-BUS ${ }^{\circledR}$ or GCl .

The IDT72V73250 automatically detects the presence of an input frame pulse and identifies it as either ST-BUS® or GCl. In ST-BUS® Mode, data is clocked out onthe falling edge and is clocked in onthe subsequentrising-edge. See Figure 12 fortiming. In GCI Mode, data is clocked out on the rising edge and is clocked in on the subsequent falling edge. See Figure 13 for timing.

INPUT FRAME OFFSET SELECTION

Inputframe offset selection allows the channel alignment of individual input streamstobeoffsetwith respecttotheoutputstreamchannelalignment. Although all input data comes in at the same speed, delays can be caused by variable path serial backplanes and variable path lengths which may be implemented in large centralized and distributed switching systems. Because data is often delayed, this feature is useful in compensating for the skew between input streams.

Each input stream can have its own delay offset value by programming the frame inputoffsetregisters(FOR, Table8). Themaximumallowableskewis +7.5 master clock (C32i) periods forward with a resolution of $1 / 2$ clock period, see Table 9. The output frame cannot be adjusted.

SERIAL INPUT FRAME ALIGNMENT EVALUATION

The IDT72V73250 provides the Frame Evaluation input to determine differentdatainputdelays with respecttotheframepulse F32i. Ameasurement cycle is started by setting the Start Frame Evaluation bit of theControl Register LOW foratleastoneframe. Whenthe StartFrame Evaluation bitintheControl Register ischangedfrom LOW to HIGH, the evaluation starts. Two frames later, the Complete FrameEvaluationbit of the Frame Alignment Registerchanges from LOW to HIGH to signal that a valid offsetmeasurement is ready to be read frombits 0 to 12 of the Frame Alignment Register. The Start FrameEvaluation bit must be setto zero before a new measurement cycle is started.

InST-BUS ${ }^{\circledR}$ mode, the falling edge of the framemeasurementsignal(Frame Evaluation) is evaluated against the falling edge of the ST-BUS ${ }^{\circledR}$ frame pulse. In GCl mode, the rising edge of Frame Evaluation is evaluated againstthe rising edge of the GCI frame pulse. See Table 7 and Figure 1 for the description of the Frame Alignment Register.

MEMORY BLOCK PROGRAMMING

The IDT72V73250 provides users with the capability of initializing the entire Connection Memory block in two frames. To set bits 14 and 15 of every Connection Memory location, first program the desired pattern in the Block Programming Data Bits (BPD1-0), located inbits 7 and 8 oftheControl Register.

The block programming mode is enabled by setting the Memory Block ProgrambitoftheControl RegisterHIGH. WhentheBlockProgrammingEnable
bit of the Control Register is setto HIGH, the Block Programming Data will be loaded into the bits 14 and 15 of every ConnectionMemory location. The other ConnectionMemory bits (bit0to bit 13) areloaded with zeros. Whenthememory block programming is complete, the device resets the Block Programming Enable, BlockProgrammingData 1-0 andMemory BlockProgrambitstozero.

DELAY THROUGH THE IDT72V73250

The switching of information from the input serial streams to the outputserial streams results in a throughput delay. The device can be programmed to performtime-slotinterchangefunctionswith differentthroughputdelay capabilities on a per-channel basis. Forvoice applications, variable throughputdelay is bestas itensure minimum delay between input and output data. In wideband data applications, constantthroughput delay is bestas the frame integrity of the information is maintained throughthe switch.

The delay throughthe device varies according to the type of throughput delay selected in the MOD bits of the Connection Memory.

VARIABLE DELAY MODE (MOD1-0 = 0-0)

Inthis mode, the delay is dependent only on the combination of source and destination channels and is independent of input and output streams. The minimum delay achievable in the IDT72V73250 is three time-slots. If the input channel data is switched tothe sameoutputchannel (channel n, framep), it will be output in the following frame (channel n, frame +1). The same is true ifthe input channel n is switched to output channel $n+1$ or $n+2$. If the input channel n is switched to outputchannel $n+3, n+4, \ldots$, the new output data will appear in the same frame. Table 2 shows the possible delays for the IDT72V73250 in Variable Delay mode.

CONSTANT DELAY MODE (MOD1-0 = 0-1)

Inthis mode, frame integrity is maintained in all switching configurations by making use of a multiple data memory buffer. Inputchannel data is written into the data memory buffers during frame n will be read out during frame $n+2$. In the IDT72V73250, the minimumthroughputdelay achievable inConstantDelay mode will be one frame plus one channel. See Table 1.

MICROPROCESSORINTERFACE

The IDT72V73250's microprocessor interface looks like a standard RAM interface to improve integration into a system. With a 15-bit address bus and a 16-bitdatabus, reads and writes are mappeddirectly into Data and Connection memories. By allowing the internal memories to be randomly accessed, the controlling microprocessor has moretime to manage other peripheral devices and can more easily and quickly gather information and setup the switch paths. Table 4 shows the mapping of the addresses into internal memory blocks.

MEMORYMAPPING

Theaddressbus onthemicroprocessorinterfaceselectstheinternal registers andmemories of the IDT72V73250.

Thetwomostsignificantbits of the addressselectbetweenthe registers, Data Memory, and ConnectionMemory. If A14 andA13areHIGH, A12-A0 are used to addressthe DataMemory. IfA14 is HIGH andA13isLOW,A12-A0 are used to address Connection Memory. If A14 is LOW and A13 is HIGH A12-A0 are usedtoselecttheControl Register, Frame Alignment Register, and FrameOffset Registers. See Table 4 for mappings.

As explained inthe Initialization sections, aftersystem power-up, the Control Registershould be programmedimmediately to establishthe desired switching
configuration.
The datainthe Control Registerconsists ofthe Memory Block Programming bit, the Block Programming Databits, the Begin Block Programming Enable, the Output Stand By , Start Frame Evaluation, Output Enable Indication, and Software Reset. As explained inthe Memory Block Programming section, the Block Programming Enable begins the programming if the Memory Block Programbitis enabled. This allows the entireConnectionMemory block to be programmed withthe Block Programming Databits. IftheODE pin is LOW, the OutputStand By bitenables (ifHIGH) or disables (ifLOW) all TX output drivers. If the ODE pin is HIGH, the contents of the Output Stand By bit is ignored and all TX output drivers are enabled.

SOFTWARE RESET

The Software Reset serves the same function as the hardware reset. As with the hard reset, the Software Reset must also be set HIGH for 20 ns before bringingtheSoftwareResetLOW againfornormal operation. OncetheSoftware Reset is LOW, internal registers and other memories may be read or written. During Software Reset, the microprocessor port is still able to read from all internal memories. The only write operation allowed during a Software Reset istotheSoftwareResetbitintheControl RegistertocompletetheSoftwareReset.

CONNECTION MEMORY CONTROL

If the ODE pin and the Output Stand By bitare LOW, all outputchannels will be in three-state. See Table 3 for detail.

IfMOD1-0 of the ConnectionMemory is 1-0 accordingly, the outputchannel will be in Processor Mode. In this case the lower eight bits of the Connection Memory are output each frame until the MOD1-0 bits are changed. If MOD10 oftheConnection Memory are 0-1 accordingly, the channel will be in Constant Delay Mode and bits 12-0 are used to address a location in Data Memory. If MOD1-0 of the Connection Memory are 0-0, the channel will be in Variable Delay Mode and bits 12-0 are used to address a location in Data Memory. If MOD 1-0 of the Connection Memory are 1-1, the channel will be in HighImpedance mode and that channel will be in three-state.

OUTPUT ENABLE INDICATION

TheIDT72V73250 has the capability to indicatethe state oftheoutputs(active orthree-state) by enabling the Output Enable Indication intheControl Register. IntheOutput Enable Indication mode however, only half of the outputstreams are available. If this same capability is desired with all 16 streams, this can be accomplished by using two IDT72V73250 or one IDT72V73260 devices. In one device, the All Output Enablebitissettoaonewhileintheotherthe All Output Enable is set to zero. In this way, one device acts as the switch and the other as a three-state control device, see Figure 5. It is important to note if the TSI device is programmed for All Output Enable and the Output Enable Indication is also set, the device will be inthe All Output Enable mode not Output Enable Indication. To use all 16 streams, set Output Enable Indication in the Control Registertozero.

INITIALIZATION OF THE IDT72V73250

After power up, the state of the Connection Memory is unknown. As such, theoutputsshouldbeputinhigh-impedanceby holdingtheODEpinLOW. While theODE is LOW, the microprocessorcan initialize the deviceby usingtheBlock Programmingfeature and programthe active paths viathe microprocessorbus. Once the device is configured, the ODE pin (orOutputStand By bitdepending on initialization) can be switched to enable the TSI switch.

TABLE-1 CONSTANT THROUGHPUT DELAY VALUE

Input Rate	Delay for Constant Throughput Delay Mode $(\mathbf{m}$ - output channel number) $(\mathrm{n}$ - input channel number)
$32.768 \mathrm{Mb} / \mathrm{s}$	$512+(512-\mathrm{n})+\mathrm{m}$ time-slots

TABLE 2-VARIABLE THROUGHPUT DELAY VALUE

Input Rate	Delay for Variable Throughput Delay Mode ($\mathrm{m}-$ output channel number; $\mathrm{n}-$ input channel number)	
	$\mathrm{m} \leq \mathrm{n}+2$	$\mathrm{~m}>\mathrm{n}+2$
$32.768 \mathrm{Mb} / \mathrm{s}$	$512-(\mathrm{n}-\mathrm{m})$ time-slots	$(m-n)$ time-slots

TABLE 3-OUTPUT HIGH-IMPEDANCE CONTROL

Bits MOD1-0 Values in Connection Memory	ODE pin	OSB bit in Control Register	Output Status
1 and 1	Don'tCare	Don'tCare	PerChannel High-Impedance
Any, other than 1 and 1	0	0	High-Impedance
Any, other than 1 and 1	0	1	Enable
Any, other than 1 and 1	1	0	Enable
Any, other than 1 and 1	1	1	Enable

TABLE 4-INTERNAL REGISTER AND ADDRESS MEMORY MAPPING

A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	RW	Location
1	1	STA3	STA2	STA1	STA0	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0	R	DataMemory
1	0	STA3	STA2	STA1	STA0	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0	R/W	ConnectionMemory
0	1	0	0	0	x	x	x	x	x	x	x	x	x	x	R/W	Control Register
0	1	0	0	1	x	x	x	x	x	x	x	x	x	x	R	Frame AlignRegister
0	1	1	0	0	x	x	x	x	x	x	x	x	x	x	R/W	FrameOffsetRegister0
0	1	1	0	1	x	x	x	x	x	x	x	x	x	x	R/W	FrameOffsetRegister1
0	1	1	1	0	x	x	x	x	x	x	x	x	x	x	R/W	FrameOffsetRegister2
0	1	1	1	1	x	x	x	x	x	x	x	x	x	x	R/W	FrameOffsetRegister3

TABLE 5 - CONTROL REGISTER (CR) BITS

Reset Value:			0000н.												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SRS	OEI	OEPOL	AOE	0	0	MBP	BPD1	BPDO	BPE	OSB	SFE	0	0	0	0

BIT	NAME	DESCRIPTION
15	SRS (Software Reset)	A one will reset the device and have the same effect as the RESET pin. Must be zero for normal operation.
14	OEI (OutputEnable Indication)	When 1, the TX8-15/OEIO-7 pins will be OEIO-7 and reflect the active or high-impedance state of their corresponding output datastreams. When 0, this feature is disabled and these pins are used as output datastreams TX8-15.
13	OEPOL (OutputEnable Polarity)	When1, aoneonanOutputEnable Indicationpindenotes anactivestate ontheoutputdatastream;zeroonanOutputEnable Indication pin denotes high-impedance state. When0, a one onan OutputEnable Indication pindenotes high-impedance andazerodenotes and active state.
12	AOE (AllOutputEnable)	When 1, TX0-15 will behave as OEI0-15 accordingly. These outputs will reflect the active or high-impedance state of the correspondingoutput data streams (TX0-15) in anotherIDT72V73250 ifprogrammedidentically. When 0, the TSI operates in the normal switch mode.
11-10	Unused	Mustbe zerofornormal operation.
9	MBP (Memory Block Program)	When 1, the Connection Memory block programming feature is ready forthe programming of Connection Memory HIGH bits, bit 14 to bit 15 . When 0 , this feature is disabled.
8-7	BPD1-0 (BlockProgramming Data)	These bits carry the value to be loaded into the Connection Memory block whenever the memory block programming feature is activated. After the Memory Block Program bit in the Control Register is set to 1 and the Block Programming Enable is set to 1, the contents of the bits Block Programming Data1-0 are loaded into bit 15 and 14 of the ConnectionMemory. Bit 13 to bit 0 of the Connection Memory are set to 0 .
6	BPE (Begin Block Programming Enable)	Azeroto one transition of this bitenables the memory block programming function. The Block Programming Enable and BlockProgrammingData1-ObitsintheControl Register havetobedefinedinthe same writeoperation. OncetheBlockProgramming Enable bitis setHIGH, the device requires two frames to complete the block programming. After the programmingfunction has finished, the Block Programming Enable, Memory Block Program and Block Programming Data 1-0 bits will be reset to zero by the device to indicate the operation is complete.
5	OSB (OutputStand By)	When $\mathrm{ODE}=0$ and Output Stand $\mathrm{By}=0$, the output drivers of the transmit serial streams are in high-impedance mode. When either $O D E=1$ or Output Stand $\mathrm{By}=1$, the output serial streams drivers function normally.
4	SFE (StartFrame Evaluation)	Azero to one transition in this bitstarts the Frame Evaluation procedure. When the Complete Frame Evaluation bitinthe Frame Alignment Registerchanges from zero to one, the evaluation procedure stops. Tostart another Frame Evaluation cycle, set this bitto zerofor atleastone frame.
$3-0$	Unused	Mustbezerofornormal operation.

TABLE 6-CONNECTION MEMORY BITS

15	14	13	12	11	10		9	8	7	6	5	4	3	2	1	0
MOD1	MODO	0	SAB3	SAB2	SA		SABO	CAB8	CAB7	CAB6	CAB5	CAB4	CAB3	CAB2	CAB1	CABO
Bit	Name			Description												
15, 14	MOD1-0 (SwitchingMode Selection)			MOD1 MOD0 MODE 0 VariableDelaymode 0 1 ConstantDelay mode 1 0 Processormode 1 1 OutputHigh-impedance												
13	Unused			Mustbezerofornormal operation.												
12-9	SAB3-0 (Source Stream Address Bits)			The binary value is the number of the data stream for the source of the connection.												
8-0	CAB8-0 (SourceChannel Address Bits)			The binary value is the number of the channel for the source of the connection.												

TABLE 7 - FRAME ALIGNMENT REGISTER (FAR) BITS

ST-BUS ${ }^{\circledR}$ Frame

(FD[11:0] = 09 H)
(FD12 = 1, sample at CLK HIGH phase)

Figure 1. Example for Frame Alignment Measurement

TABLE 8 - FRAME INPUT OFFSET REGISTER (FOR) BITS

Reset Value:0000hfor all FOR registers.																
Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FOR0Register	OF32	OF31	OF30	DLE3	OF22	OF21	OF20	DLE2	OF12	OF11	OF10	DLE1	OF02	OF01	OFO0	DLE0
FOR1 Register	OF72	OF71	OF70	DLE7	OF62	OF61	OF60	DLE6	OF52	OF51	OF50	DLE5	OF42	OF41	OF40	DLE4
FOR2Register	OF112	OF111	OF110	DLE11	OF102	OF101	OF100	DLE10	OF92	OF91	OF90	DLE9	OF82	OF81	OF80	DLE8
FOR3Register	OF152	OF151	OF150	DLE15	OF142	OF141	OF140	DLE14	OF132	OF131	OF130	DLE13	OF122	OF121	OF120	DLE12

Name ${ }^{(1)}$	Description
OFn2, OFn1, OFn0, (Offset Bits 2, $1 \& 0$)	These three bits define how long the serial interface receiver takes to recognize and store bit O from th RX input pin: i.e., to start a new frame. The inputframe offset can be selected to +7.5 clock periods from the point where the external frame pulse input signal is applied to the F32i input of the device. See Figure 2.
DLEn	$\begin{array}{ll}\text { ST-BUS }{ }^{\oplus} \text { and } & \text { DLEn }=0 \text {, offset is on the clock boundary. } \\ \text { GCI mode: } & \text { DLEn }=1 \text {, offset is a half clock cycle off of the clock boundary. }\end{array}$

NOTE:

1. n denotes an input stream number from 0 to 15 .

TABLE 9 - OFFSET BITS (OFn2, OFn1, OFn0, DLEn) \& FRAME DELAY BITS (FD12, FD2-0)

InputStream Offset	Measurement Resultfrom Frame Delay Bits				Corresponding OffsetBits			
	FD12	FD2	FD1	FDO	OFn2	OFn1	OFn0	DLEn
Noclock periodshift (Default)	1	0	0	0	0	0	0	0
+ 0.5 clock period shift	0	0	0	0	0	0	0	1
+ 1.0 clock period shift	1	0	0	1	0	0	1	0
+ 1.5 clock period shift	0	0	0	1	0	0	1	1
+2.0 clock period shift	1	0	1	0	0	1	0	0
+2.5 clock period shift	0	0	1	0	0	1	0	1
+3.0 clock period shift	1	0	1	1	0	1	1	0
+3.5 clock period shift	0	0	1	1	0	1	1	1
+4.0 clock period shift	1	1	0	0	1	0	0	0
+4.5 clock period shift	0	1	0	0	1	0	0	1
+5.0 clock period shift	1	1	0	1	1	0	1	0
+5.5 clock period shift	0	1	0	1	1	0	1	1
+6.0 clock period shift	1	1	1	0	1	1	0	0
+6.5 clock period shift	0	1	1	0	1	1	0	1
+7.0 clock period shift	1	1	1	1	1	1	1	0
+7.5 clock period shift	0	1	1	1	1	1	1	1

Figure 2. Examples for Input Offset Delay Timing in $32.768 \mathrm{Mb} / \mathrm{s}$ mode

JTAG SUPPORT

The IDT72V73250JTAG interface conformstothe Boundary-Scan standard IEEE-1149.1. This standard specifies a design-for-testabilitytechnique called Boundary-Scan test (BST). The operation of the boundary-scan circuitry is controlled by an external test access port (TAP) Controller.

TEST ACCESS PORT (TAP)

The Test Access Port (TAP) provides access to the test functions of the IDT72V73250. It consists of three input pins and one outputpin.
-Test Clock Input (TCK)
TCK provides the clockforthetestlogic. The TCK does notinterfere with any on-chip clock and thus remains independent. The TCK permits shifting oftest data into or out of the Boundary-Scan register cells concurrently with the operation of the device and without interfering with the on-chip logic.
-Test Mode Select Input (TMS)
The logic signals received at the TMS input are interpreted by the TAP Controllerto control the testoperations. The TMS signals are sampled at the rising edge of the TCK pulse. This pinis internally pulled to VCC when itis not driven from an external source.
-Test Data Input (TDI)
Serial input data applied to this portisfed either into the instruction register or into a test data register, depending on the sequence previously applied to the TMS input. Both registers are described in a subsequent section. The received input data is sampled at the rising edge of TCK pulses. This pin is internally pulled to VCC when it is not driven from an external source.
-TestDataOutput(TDO)
Dependingon the sequence previously appliedtothe TMS input, the contents of eitherthe instruction register or data register are serially shifted outthrough the TDO pin on the falling edge of each TCK pulse. When no data is shifted throughtheboundary scancells, the TDOdriverissettoahigh-impedancestate.

- Test Reset (TRST)

Reset the JTAG scan structure. This pin is internally pulled to Vcc when it is not driven from an external source.

INSTRUCTION REGISTER

In accordance withthe IEEE-1149.1 standard, the IDT72V73250 uses public instructions. The IDT72V73250 JTAG interface contains afour-bitinstruction register. Instructions are serially loaded into the instruction registerfrom the TDI whenthe TAPControllerisinitsshitt-IRstate. Subsequently, the instructionsare decodedto achieve two basicfunctions: to selecthe testdata registerthatmay operate while the instruction is current, and to define the serial testdata register path, which is used to shift data between TDI and TDO during data register scanning. See Table 12 below for Instruction decoding.

TESTDATAREGISTER

Asspecified inIEEE-1149.1, the IDT72V73250 JTAG Interface containstwo testdataregisters:
-The Boundary-Scan register
The Boundary-Scan register consists of a series of Boundary-Scan cells arranged to form a scan path around the boundary of the IDT72V73250 core logic.
-The Bypass Register
The Bypass registeris asingle stage shiftregisterthat provides aone-bitpath from TDI to TDO. The IDT72V73250 boundary scan register bits are shown in Table 14. Bit0 is the firstbitclocked out. All three-state enable bits are active HIGH.

ID CODE REGISTER

As specified in IEEE-1149.1, this instruction loads the IDR with the Revision Number, Device ID, JEDEC ID, and ID Register Indicator Bit. See Table 10.

TABLE 10—IDENTIFICATION REGISTER DEFINITIONS

INSTRUCTION FIELD	VALUE	
Revision Number (31:28)	0×0	Reservedforversionnumber
IDT Device ID (27:12)	0×437	Defines IDT partnumber
IDT JEDEC ID (11:1)	0×33	Allows unique identification of device vendoras IDT
IDRegister Indicator Bit (Bit0)	1	Indicates the presence of an ID register

TABLE 11 - SCAN REGISTER SIZES

REGISTERNAME	BIT SIZE
Instruction (IR)	4
Bypass (BYR)	1
Identification(IDR)	32
Boundary Scan (BSR)	Note(1)

NOTES:

1. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local IDT sales representative.

TABLE 12— SYSTEM INTERFACE PARAMETERS

INSTRUCTION	CODE	
EXTEST	0000	Forces contents of the boundary scan cells onto the device outputs ${ }^{(1)}$. Places the boundary scan register (BSR) between TDl and TDO.
BYPASS	1111	Places the bypass register (BYR) between TDI and TDO.
IDCODE	0010	Loads the ID register (IDR) with the vendor ID code and places the register between TDI and TDO.
HIGH-Z	0100	Places the bypass register (BYR) between TDI and TDO. Forces all device output drivers to a High-Z state.
CLAMP	0011	Places the bypass register (BYR) between TDI and TDO. Forces contents of the boundary scan cells onto the device outputs.
SAMPLE/PRELOAD	0001	Places the boundary scan register (BSR) between TDI and TDO. SAMPLE allows data from device inputs captured in the boundary scan cells and shifted serially through TDO. PRELOAD allows data to be input serially into the boundary scan cells via the TDI.
RESERVED	All othercodes	Several combinations are reserved. Do not use other codes thanthose identified above.

NOTES:

1. Device outputs $=$ All device outputs except TDO.
2. Device inputs = All device inputs except TDI, TMS and TRST.

TABLE 13 - JTAG AC ELECTRICAL CHARACTERISTICS ${ }^{(1,2,3,4)}$

SYMBOL	PARAMETER	MIN.	MAX.	UNITS
tucyc	JTAG Clock Input Period	100	-	ns
tJCH	JTAG Clock High	40	-	ns
UJCL	JTAG Clock Low	40	-	ns
UR	JTAG Clock Rise Time	-	$3^{(1)}$	ns
tJF	JTAG Clock Fall Time	-	$3^{(1)}$	ns
tJRST	JTAGReset	50	-	ns
UTRSR	JTAG Reset Recovery	50	-	ns
UJCD	JTAG Data Output	-	25	ns
UDC	JTAG Data Output Hold	0	-	ns
tus	JTAG Setup	15	-	ns
tur	JTAG Hold	15	-	ns

NOTES:

1. Guaranteed by design.
2. 30 pF loading on external output signals.
3. Refer to AC Electrical Test Conditions stated earlier in this document.
4. JTAG operations occur at one speed (10 MHz). The base device may run at any speed specified in this datasheet.

NOTES:

1. Device inputs $=$ All device inputs except TDI, TMS and TRST.
2. Device outputs $=$ All device outputs except TDO.

Figure 3. JTAG Timing Specifications

TABLE 14- BOUNDARY SCAN REGISTER BITS

Device Pin	Boundary Scan Bit 0 to bit 119		
	Input Scan Cell	Output Scan Cell	Three-State Control
ODE	0		
RESET	1		
C32i	2		
F32i	3		
FE	4		
$\overline{\text { DS }}$	5		
$\overline{\mathrm{CS}}$	6		
R/W	7		
A0	8		
A1	9		
A2	10		
A3	11		
A4	12		
A5	13		
A6	14		
A7	15		
A8	16		
A9	17		
A10	18		
A11	19		
A12	20		
A13	21		
A14	22		
$\overline{\text { DTA }}$		23	
D15	24	25	26
D14	27	28	29
D13	30	31	32
D12	33	34	35
D11	36	37	38
D10	39	40	41
D9	42	43	44
D8	45	46	47
D7	48	49	50
D6	51	52	53
D5	54	55	56
D4	57	58	59
D3	60	61	62
D2	63	64	65
D1	66	67	68
D0	69	70	71

Device Pin	Boundary Scan Bit 0 to bit 119		
	Input Scan Cell	Output Scan Cell	Three-State Control
TX15/OEI7		72	73
TX14/OEI6		74	75
TX13/OEI5		76	77
TX12/OEI4		78	79
TX11/OEI3		80	81
TX10/OEI2		82	83
TX9/OEI11		84	85
TX8/OEI0		86	87
RX15	88		
RX14	89		
RX13	90		
RX12	91		
RX11	92		
RX10	93		
RX9	94		
RX8	95		
TX7		96	97
TX6		98	99
TX5		100	101
TX4		102	103
TX3		104	105
TX2		106	107
TX1		108	109
TX0		110	111
RX7	112		
RX6	113		
RX5	114		
RX4	115		
RX3	116		
RX2	117		
RX1	118		
RXO	119		

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage	-0.5	+4.0	V
Vi	Voltageon Digital Inputs	$\mathrm{GND}-0.3$	$\mathrm{Vcc}+0.3$	V
IO	CurrentatDigital Outputs	-50	50	mA
TS	Storage Temperature	-55	+125	${ }^{\circ} \mathrm{C}$
PD	Package PowerDissapation	-	2	W

NOTE:

1. Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

RECOMMENDED OPERATING CONDITIONS ${ }^{(1)}$

Symbol	Parameter	Min.	Typ.	Max.	Unit
VCC	Positive Supply	3.0	3.3	3.6	V
VIH	Input HIGH Voltage	2.0	-	VCC	V
VIL	InputLOW Voltage	-0.3	-	0.8	V
TOP	OperatingTemperature Industrial	-40	25	+85	${ }^{\circ} \mathrm{C}$

NOTE:

1. Voltages are with respect to Ground unless otherwise stated.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Min.	Typ.	Max.	Units
$\mathrm{ICC}^{(2)}$	SupplyCurrent $@ 32.768 \mathrm{Mb} / \mathrm{s}$	-	-	160	mA
$\mathrm{IIL}^{(3,4)}$	InputLeakage(inputpins)	-	-	60	$\mu \mathrm{~A}$
$\mathrm{IOZ}^{(3,4)}$	High-impedanceLeakage	-	-	60	$\mu \mathrm{~A}$
$\mathrm{VoH}^{(5)}$	OutputHIGH Voltage	2.4	-	-	V
VoL $^{(6)}$	OutputLOWVoltage	-	-	V	

NOTES:

1. Voltages are with respect to ground (GND) unless otherwise stated.
2. Outputs unloaded.
3. $0 \leq \mathrm{V} \leq \mathrm{VCC}$.
4. Maximum leakage on pins (output or I/O pins in high-impedance state) is over an applied voltage (V).
5. $1 \mathrm{OH}=10 \mathrm{~mA}$.
6. $10 \mathrm{~L}=10 \mathrm{~mA}$.

AC ELECTRICAL CHARACTERISTICS - TIMING PARAMETER MEASUREMENT VOLTAGE LEVELS

Symbol	Rating	Level	Unit
V_{TT}	TTLThreshold	1.5	V
VHM	TTLRise/Fall Threshold Voltage HIGH	2.0	V
VLM	TTLRise/Fall ThresholdVoltageLOW	0.8	V
	InputPulseLevels		V
tR, tF	InputRise/FallTimes	1	ns
	InputTiming ReferenceLevels		V
	OutputReferenceLevels		V
$\mathrm{CL}^{(1)}$	OutputLoad	50	pF
$\mathrm{Cin}^{(2)}$	InputCapacitance	8	pF

NOTES:

1. JTAG CL is 30 pF .
2. For 144 TQFP.

Figure 4. Output Load

Figure 5. Output Load

Figure 6. Lumped Capacitive Load, Typical Derating

AC ELECTRICAL CHARACTERISTICS - FRAME PULSE AND CLOCK

Symbol	Parameter	Min.	Typ.	Max.	Units
tFPW	FramePulseWidth Bit rate $=32.768 \mathrm{Mb} / \mathrm{s}$	13	-	31	ns
tFPS	Frame Pulse Setup time beforeC32ifalling	5	-	-	ns
tFPH	Frame Pulse Hold Time from C32ifalling	10	-	-	ns
tCP	$\begin{aligned} & \text { C32i Period } \\ & \text { Bit rate }=32.768 \mathrm{Mb} / \mathrm{s} \end{aligned}$	29	30.5	35	ns
tCH	C32i Pulse Width HIGH Bit rate $=32.768 \mathrm{Mb} / \mathrm{s}$	13	15	20	ns
tcl	C32i Pulse Width LOW Bit rate $=32.768 \mathrm{Mb} / \mathrm{s}$	13	15	20	ns

1. To guarantee TX outputs remain in High-Impedance.

Figure 7. Reset and ODE Timing

Figure 8. Serial Output and External Control

Figure 9. Output Driver Enable (ODE)

AC ELECTRICAL CHARACTERISTICS - MICROPROCESSOR INTERFACE TIMING

Symbol	Parameter	Min.	Typ.	Max.	Units
tcss	CS Setup from DS falling	0	-	-	ns
trws	R/W Setup from DS falling	3	-	-	ns
tads	Address Setup from DS falling	2	-	-	ns
tcs H	CS Hold after DS rising	0	-	-	ns
trwh	R/W Hold after DS Rising	3	-	-	ns
tadh	Address Hold after DS Rising	2	-	-	ns
todr	Data Setup from $\overline{\text { DTA }}$ LOW on Read	1	-	-	ns
tohr	Data Hold on Read	10	15	25	ns
tosw	Data Setup on Write (RegisterWrite)	10	-	-	ns
tswo	Valid Data Delay on Write (Connection Memory Write)	-	-	0	ns
tohw	Data Hold on Write	5	-	-	ns
takD	AcknowledgmentDelay: Reading/WritingRegisters Reading/WritingMemory @ $32.768 \mathrm{Mb} / \mathrm{s}$			$\begin{aligned} & 32 \\ & 80 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
takh	AcknowledgmentHold Time	-	-	20	ns
tbss	DataStrobeSetup Time	6	-	-	ns

NOTE:

1. For quick microprocessor access tDSs must be met. In this case tAKD $=$ tAKD (max) - C32i (period) + tDSs.

Figure 10. Motorola Non-Multiplexed Bus Timing

Figure 11. Output Enable Timing (ST-BUS ${ }^{9}$)

AC ELECTRICAL CHARACTERISTICS - SERIAL STREAM (ST-BUS® ${ }^{\circledR}$ and GCI)

Symbol	Parameter	Min.	Typ.	Max.	Units
tsis	RXSetup Time	2	-	-	ns
tsiH	RXHold Time	4	-	-	ns
tsod	Clock to Valid Data	4	-	12	ns
tCHz	Clock to High-Z	-	-	9	ns
tCLz	Clock to Low-Z	3	-	-	ns
tode	OutputDriver Enable to ResetHigh	5	-	-	ns
todehz	Output Driver Enable (ODE) to High-Z	-	-	9	ns
todelz	Output Driver Enable (ODE) to Low-Z	5	-	-	ns
toel	OutputEnable Indicator	8	-	12	ns
tRZ	Active to High-Z on Master Reset	-	-	12	ns
tzR	High-Z to Active on Master Reset	-	-	12	ns
trs	Resetpulse width	20	-	-	ns
todea	Output Driver Enable to Active	6	-	16	ns

ORDERING INFORMATION

IDT \qquad
\qquad Package $\frac{\mathrm{X}}{\begin{array}{c}\text { Process } / \\ \text { Temperature } \\ \text { Range }\end{array}}$

Commercial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Thin Quad Flatpacks (TQFP, DA144-1) Plastic Ball Grid Array (PBGA, BB144-1)

72V73250 8,192 x 8,192-3.3V Time Slot Interchange Digital Switch

DATASHEET DOCUMENT HISTORY

$\begin{array}{ll}08 / 15 / 2001 & \text { pgs. } 2,3,18,19,21,22,23 \text { and } 24 . \\ 09 / 24 / 2001 & \text { pgs. } 2,11,21,23 \text { and } 24 .\end{array}$
pgs. 1-14 and 17-24.
pgs. 1, 4-6, 8, 13, 15-17 and 22.
pgs. 15 and 16.
pg. 8.
pg. 16.

